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We calculate spin and charge excitation spectra of the one-dimensional (1D) quarter-filled Hubbard model
with nearest-neighbor ¢ and next-nearest-neighbor ¢’ hopping integrals using the dynamical density-matrix
renormalization group technique. We consider a case where ¢ (>0) is much smaller than ¢’ (>0). First, we
examine the accuracy of our method based on comparison between our result and exact noninteracting spec-
trum. Next, we investigate the spectra with the on-site Coulomb interaction. We find that the spin and charge
excitation spectra are essentially the same as those of the 1D quarter-filled Hubbard (and #-J) model for the two
ID chains along the hopping integral 7. However, the hopping integral 7 (<t') plays a crucial role in the
short-range correlations and low-energy excitaions; ferromagnetic correlation between electrons on neighbor-
ing sites is enhanced and pairing correlation between the electrons is induced. Consequently, a spin-triplet

superconducting state may be derived.
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I. INTRODUCTION

Spin-triplet superconductivity has been one of the major
issues in the field of condensed matter physics. Nearly all the
conventional and unconventional superconductors known to
date are spin-singlet paired. The best-known example of trip-
let pairing is not a superconductor but a superfluid, *He,
where the atomic Cooper pairs are formed in spin-triplet
channel.! Only a few materials of spin-triplet superconduc-
tivity have, so far, been confirmed in the strongly correlated
electron systems; for example, the ruthenium-oxide
Sr,Ru0,,> sodium  cobalt oxide bilayer-hydrate
Na,Co0,-yH,0,® and heavy-fermion compounds such as
UPt;.* Here, some questions will naturally arise. One is
whether the electron correlation can take an essential part in
superconductivity carried by spin-triplet pairs. Another is
how the behavior differs from that of spin-singlet supercon-
ductivity. In this manner, research on spin-triplet supercon-
ductivity might offer an opportunity to expose unknown
physical phenomena.

Quite recently, a new mechanism of the spin-triplet super-
conductivity has been proposed in a fairly simple correlated
system using the density-matrix renormalization group
(DMRG) method.> The model consists of two Hubbard
chains coupled with zigzag bonds and has a unique structure
of hopping integrals: sign of the hopping integrals changes
alternately along the zigzag bonds connecting two chains,
while the sign along the one-dimensional (1D) chain is al-
ways negative (a model where all the hopping integrals are
taken to be positive is equivalent under canonical transfor-
mation). Under this sign rule of the hopping integrals, the
ring-exchange mechanism yields ferromagnetic spin correla-
tions; accordingly, attractive interaction between electrons is
derived. Also, other DMRG studies®® have been carried out
from an interest in ferromagnetism. They suggested that the
spin gap vanishes for large interaction in contrast to a weak-
coupling analysis® which leads to only a spin-singlet super-
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conducting state. In all the previous DMRG studies, the ar-
guments were developed on the basis of only the static
properties such as pair binding energy, spin excitation gap,
and pairing correlation function, as well as spin-spin corre-
lation function. Therefore, further investigations including
dynamical properties must be needed.

The model may be of possible relevance to superconduc-
tivity observed in quasi-1D organic conductor (TMTSF) ,X [
X=PFg, ClO,], which is the so-called Bechgaard salts.'®! Tt
exhibits a rich phase diagram upon variation of the pressure
and the temperature. At low temperature, the phase changes
in the order corresponding to spin-Peierls insulator, antifer-
romagnetic insulator, spin-density-wave (SDW) insulator,
superconductivity, and paramagnetic metal, with an increase
in the pressure. So far, experimental evidence that the super-
conducting state is in the triplet channel has been piled up.'?
However, physics of the spin-triplet superconductivity is less
well understood. A newly synthesized copper-oxide com-
pound Pr,Ba,Cu,0s_s (Ref. 13) may also be a relating sys-
tem. This material consists of single CuO chains (as in
PrBa,Cu;05) and double CuO chains (as in PrBa,Cu,Oy),
and those chains are separated by insulating CuO, plains. It
has been reported that the double chains turn into a super-
conducting state below T,.~10 K.'* The structure of the
double CuO chains bears a certain similarity to our model."

The purpose of the present study is to build up under-
standing of the low-energy physics of the 1D Hubbard model
with positive nearest-neighbor hopping integral by calculat-
ing dynamical quantities. Due to the spin-charge separation,
the spin and charge degrees of freedom must be dealt with
separately. So we calculate the momentum-dependent dy-
namical spin-spin and density-density correlation functions
using the dynamical density-matrix renormalization group-
(DDMRG) method,'® which is an extension of the standard
DMRG method!” for calculating dynamical quantities. The
obtained results with high resolution enable us to discuss the
details of fundamental properties on the spin and charge ex-
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FIG. 1. (a) Lattice structure and (b) noninteracting band disper-
sion for #'/t>1. The lattice constant a is defined as an intersite
distance along the ¢ chain.

citations. Thus, we can find some interesting features in the
low-energy physics; they lead to the enhancement of ferro-
magnetic correlation between neighboring sites and the ap-
pearance of attractive interaction between electrons. As a re-
sult, a spin-triplet superconducting state may be derived. We
are also confident that this investigation should provide
deeper insight into the knowledge of ferromagnetism and
spin-triplet superconductivity.

Our paper is organized as follows. In Sec. II, we define
the 1D r—¢'-U model and introduce the physical quantities of
interest, namely, spin and charge excitation spectra. In Sec.
III, exact solution of the spin (and charge) excitation spec-
trum in the noninteracting case is presented, and by compar-
ing our result with them, we evaluate the performance of the
DDMRG method. We then study the spectra with the on-site
Coulomb interaction and discuss the relevance to the spin-
triplet superconductivity. We close with a short summary in
Sec. IV.

II. MODEL AND METHOD

We consider the 1D Hubbard model with next-nearest-
neighbor hopping, the Hamiltonian is written as

H=12, (cl,,,cio+ Hee.) +1' 2, (¢l cip + Hec.)
+UE i, (1)

where ¢} (c;,) is the creation (anihilation) operator of an
electron with spin ¢ at site i and n,-(,=cjgc,-,, is the number
operator. Here, #(>0) is the nearest-neighbor and ¢'(>0) the
next-nearest-neighbor hopping integrals and U is the on-site
Coulomb interaction [see Fig. 1(a)]. We call a chain along
the ¢ (¢') hopping integral ¢ chain (¢ chain). The dispersion
relation is given by

g, =2t cos ka + 2t' cos 2ka, (2)

where a is the lattice constant along the ¢ chain (we set a
=1 hereafter). For t'/t> (cos?[(2—p)m/2])/sin’[(2—p) 7] (p
is the band filling), there are two branches, namely, four
Fermi momenta *kz; and *kpy (|kg,| > |k |), of the non-
interacting Fermi surface [see Fig. 1(b)]. In this paper, we
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restrict ourselves to the case where ¢’ is a few times as large
as t and the system is quarter filled, p=1/2. Hence, the
model can be regarded as a double #'-chain Hubbard model
weakly coupled by ¢ chain.

Because ¢ is much smaller than ¢, it would be very useful
to allow a case of =0 for familiarization with our results. In
the limit of — 0, the system is equivalent to two indepen-
dent 1D quarter-filled Hubbard chains since all electrons are
distributed equally to the chains. The Brillouin zone is now
folded in half and the noninteracting dispersion relation is
g,=2t' cos g. There are two Fermi momenta, ik: (=m/4).

In order to study the correlation effect on the spin and
charge degrees of freedom, we calculate the spin excitation
spectrum,

1 -
S(g,0) = — Im(Ws:— sV, ()
™ H+w-Ey—in

with s;:(l / \S'Z)E,eiq’c}c, 1» and charge excitation spectrum,

1
N(g,w)=— Im(‘I’O|nq ~
™ H+w-Ey—in

n—q|q,0> s (4)

with n,=(1/ VL)S,,¢'n,,. Here, |¥,) and E, are the ground-
state wave function and energy of Hamiltonian (1). The
DDMRG technique is applied to calculate the excitation
spectra. We here use open-end boundary conditions (OBCs)
for accurate calculation, because the system is relatively hard
to deal with by the DMRG method due to large long-range
hopping integrals.!” When the OBCs is used, we need to use
the quasimomenta k=mm/(L+1) for integers | <m=<1L on a
chain with L sites to express the momentum-dependent op-

+ 18
erators s, and 71,,.

II1. RESULTS
A. Noninteracting spectrum

First, let us consider the noninteracting case, U=0, where
the model is exactly solvable. Then, since an excitation just
corresponds for creating a particle-hole pair for the ground
state, we can obtain the exact spectrum of spin excitations,

> u (5)

2 2°
Ep<Eriq (w_ 8k+q+ Sk) + 7

1
S(g, ) = lim —

7—+0 Lwak<

where small # is introduced to regularize the poles at par-
ticular frequency w. Note that the spectrum of charge exci-
tations is exactly twice as large as that of the spin excitation,
i, N(g,w)=2S(g,w), for U=0, because N(gq,w) is just
summed over both up and down spins.

In Fig. 2, we show the exact noninteracting spin excita-
tion spectrum S(g, w) [Eq. (5)]. For small #/¢'(<1), the spec-
trum contains two predominant features: (i) large-weighted
double sine curve structure whose dispersions are ap-
proimately written as o~ (41’ *2f)sing and (ii) small-
weighted continuum structure in low-frequency range, which
arises from excitations between the different branches. A
zero-energy excitation is caused by creation of a particle-
hole pair just at the Fermi level e, so that the gap closes at

115102-2



CHARGE AND SPIN EXCITATION SPECTRA IN THE...

LA L B L B
| o5 — ]
el :
(,) - B
00 ;] T
= =7
kpy + kre — G
T =
1 S
Qk‘FIHE ﬁ‘
—] S
2 — ks — "@‘ii
—] ‘év‘Jis‘
=
: LLV _
kpo — kp1 —
—W
T
=
—
—H\ =
B
T I I |q_>|0 |
0o 1 2 3 4 5

FIG. 2. Exact spin excitation spectrum 2S(q,w) [=N(q, )] for
t=0.25 and ¢'=1 in the noninteracting case (U=0). Broadening 7
=0.03 is introduced. Five momenta with arrow in the left side de-
note gapless points.

five momenta ¢=0, kp—kp(=7/4), 2kp, 2kpy, and kg
+kp).

Now, we attempt to reproduce the noninteracting spin ex-
citation spectrum (see Fig. 2) using the DDMRG method.
Since the noninteracting model poses a nontrivial problem to
the DDMRG technique, it gives us a relevant accuracy test.
When carrying out the DDMRG calculation, one of the most
important things is to take account of required CPU time.
Ordinarily, the DDMRG method takes much longer time
than the standard DMRG method because the excited states
must be obtained and an asked quantity must be calculated
(almost) individually for each frequency. Additionally, a re-
quired CPU time 7cpy increases rapidly with frequency w
and/or system size L in the DDMRG calculation. It is esti-
mated approximately as 7epy© (1 <a<2) and 7epy*L,
keeping the other conditions. Hence, it would be efficient to
take a relatively small system for obtaining an overview of
spectrum and larger system for studying a detailed structure
in low-frequency range.

Let us then check our DDMRG result with the exact spec-
trum. In the right panel of Fig. 3, we show the spin excitation
spectrum S(g,w) for U=0 calculated with the DDMRG
method in a chain with L=24 sites. The double sine curve
structure can be clearly seen. However, it is hard to investi-
gate dispersive structures in the low-frequency range because
only discrete peaks can be obtained instead of the exact con-
tinuum spectra due to finite-size effect. We need to take
larger system to resolve this problem since the resolution of
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FIG. 3. Spin excitation spectrum 2S(g,w) [=N(q,w)] for the
same parameter set as Fig. 2 in the noninteracting case (U=0) cal-
culated with the DDMRG method. Right (left) panel is result for
L=24 and 7=0.1 (L=48 and 7=0.04). Inset: spin structure factor
S(g) obtained from  integration of S(g, ).

spectrum can be improved in proportion to the system size.
We therefore choose to double the system size, L=48, and
consider the low-energy excitations. The result is shown in
the left panel of Fig. 3. The resolution is obviously im-
proved, and we can now confirm the five momenta which
should give zero excitation. Moreover, we can see good
agreement of the spin structure factor S(q)[=2,5(q,w)] be-
tween the DDMRG and the exact results, as shown in the
inset of Fig. 3. Thus, we are confident that the DDMRG
method, indeed, enables us to study the details of relatively
complicated spectrum structures.

For the information, we keep m=400 (800) density-matrix
eigenstates to obtain the spectrum for L=24 (48) sites. Note
that a larger m value would be necessary to get the “correct”
ground state and excited state s | W) (or n_,|¥y)) of the
system. Actually, we set m=1200 in the first four to five
DDMRG sweeps.

B. Spin excitation spectrum

Next, we see how the spin excitations is changed with the
on-site Coulomb interaction. Figure 4 shows the spin excita-
tion spectrum S(g, w) for t=0.25, t'=1, and U=10 calculated
with the DDMRG in a chain with L=24 (right panel) and
with L=48 (left panel). Roughly speaking, the lower edge of
the spectrum consists of three sine curves with four nodes:
q~0, kpy—kp(=m/4), m—(kpy—kp)(=37/4), and 7. The
excitation gap seems to close around these nodes. It is con-
sistent with previous theoretical studies,”” which have sug-
gested that no spin gap exists in the strong-coupling regime.
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FIG. 4. Spin excitation spectrum S(g, ) in t=0.25, t'=1, and
U=10 calculated with the DDMRG method for L=24, 5=0.1 (right
panel) and L=48, n=0.04 (left panel). Inset: spin structure factor
S(q) obtained from w integration of S(g, ).

On the other hand, the higher edge of the spectrum is ap-
proximately represented as a sine curve w~sing as in the
case of U=0, which comes from the creation of particle-hole
pairs within the same branch.

Let us now take a closer look at the spectrum. As far as
the spin degrees of freedom are concerned, model (1) for
large U may be mapped into a two-chain #-J model coupled
with zigzag bonds. For small ¢/¢', antiferromagnetic interac-
tion along the ¢’ chain, J', must be much larger than that
along the ¢ chain, J, if we assume that the exchange interac-
tion comes from the second-order perturbation of hopping
integral with a fixed U, i.e., J'(~t'%?) > J(~¢*). Consequently,
the features of spectrum can be basically interpreted as those
of the 1D quarter-filled 7-/ model.**** The nodes of lower
edge in the DDMRG spectrum correspond to g=0, k T

kF, and r, respectively. Also, we can see con51derable en-
largement of spectral intensities around g=/4(=kp—kp)
as compared with the noninteracting spectrum. This means
that the onsite Coulomb interaction enhances antiferromag-
netic correlation with a period of four times the lattice con-
stant along the ¢ chain, which can be easily expected from
the fact that the Zk:—SDW correlation is the most dominant
for small J in the 1D quarter-filled #-J model. This result is
compatible with the 2k-SDW state observed experimentally
in (TMTSF),X."

We then study the effect of small hopping integral ¢,
which leads to the antiferromagnetic interaction J along the ¢
chain as mentioned above. From the viewpoint of the spin
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degrees of freedom, magnetical frustration must be brought
because triangular lattices are formed of only the anti-
ferromagnetic interactions. Although J is much smaller
than J', we can clearly see the influence in the DDMRG
spectrum; there are two nodes around g=3m/4: ie., g
~2kp, (>37/4) and 27—2kp, (<3m/4). These nodes are
collected into a single node at g=37/4 when r=0. This split
actually signifies a tendency to a formation of 2k -SDW state
along the ¢ chain as well as to a collapse of 2k -SDW state
along the 7’ chain. With increasing #/¢', the node at ¢=2kg,
approaches g=m/2 and the adjacent spectral weight in-
creases, whereas the node at g=2kp; goes away from ¢
=3/4 and the weight goes toward zero. In other words, the
hopping term ¢ weakens the 2k;-SDW oscillation along the ¢’
chain since the competing antiferromagnetic correlation
along the ¢ chain is enhanced. Hence, the spectral weight
around g= /4 will certainly diminish as 7/¢" increases.

Another noticeable feature is that spectral weight around
g=3m/4 is obviously smaller than that around g=m/4, while
the spectrum should be symmetrical about g=1r/2 in the case
of #=0. For clearer understanding, we study the spin struc-
ture factor S(g). As shown in the inset of Fig. 4, it is evident
that S(g) around g=m/4 is greater than that around g¢
=3m/4; otherwise, S(g) seems to be almost symmetrical to
g=m/2. This implies an enhancement of ferromagnetic cor-
relation between neighboring sites along the 7 chain, which is
explained in the following paragraph. Note that, however, the
ground state is not ferromagnetically polarized since the
slope of S(g) at g=0 is almost unchanged from the U=0
result.

A real-space behavior of the spin-spin correlation may be
derived from the Fourier transform of S(g),

(5;85) = —E S(g)e' D, (6)

with S5=(n;;—n;)/2. We find that the spin correlation along
the ¢' chain could not affected so much by small ¢, but the
decay length of the 2kz-SDW oscillation is slightly short-
ened. On the contrary, the ¢ hopping term plays a prominent
role in spin correlation between the ¢’ chains. It is estimated
as (S:S7, gy ccos[(7/4)R] X (decaying term), where R is odd
number. For R=1, (S:S%,,)=0.007 45 is obtained, which in-
dicates the presence of ferromagnetic correlation between
two electrons at the neighboring sites. This result is consis-
tent with a scenario of spin-triplet superconductivity where
the pairing of electrons occurs between the inter-t’-chain
nearest-neighbor sites, proposed in Ref. 5.

C. Charge excitation spectrum

Finally, we study the charge correlation function with the
on-site Coulomb interaction. Figure 5 shows the charge ex-
citation spectrum N(g,w) for r=0.25, t'=1, and U=10, cal-
culated with the DDMRG method in a chain with L=24
(right panel) and with L=48 (left panel). The outline of spec-
trum, which is roughly expressed as w=4t’ sin g, seems to
be similar to that in the noninteracting spectrum. This result
reflects the fact that the dispersion is hardly affected by the
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FIG. 5. Charge excitation spectrum N(g, w) in the same param-
eter set as Fig. 4 calculated with the DDMRG method for L=24,
7=0.1 (right panel) and L=48, 7=0.04 (left panel). Inset: charge
structure factor N(g) obtained from w integration of N(q, ).

on-site Coulomb interaction. Instead, two distinctive features
emerge in the low-frequency range as discussed below.

One is the increase of spectral weight around g=/2 in
the low-energy excitations. The excitation gap also seems to
close there. Thus, lower edge of the spectrum consists of two
sine curves with three nodes: ¢ ~0, 77/2, and 7. This gives a
tendency to the Peierls instability, namely, a formation of the
4kp-charge-density wave (CDW) along the ¢’ chain. It would
be more evident if we look over the momentum-dependent
charge structure factor N(g), as shown in the inset of Fig. 5.
It shows the maximum value at g=m/2 and practically the
straight line up to g=7/2 from ¢g=0 (or ). It is consistent
with results in the 1D quarter-filled Hubbard chain.? In fact,
this result is almost equivalent to a half-filled band of non-
interacting spinless electrons as far as the charge degrees of
freedom are concerned.

The other is an apperance of large-weighted sharp peaks
around g=0 at w=0. The point is as follows: spectral weight
of the peaks around ¢=0 is larger than that around g=1r in
the low-frequency range, and they are also gathered at lower
frequencies. This implies that the electrons tend to come in
the neighboring sites along the ¢ chain, which is associated
with pairing of two electrons between the inter-¢’-chain sites;
accordingly, the pairs tend to be arranged alternately along ¢’
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chain. Note that momenta g=0 and 7 should be equivalent
when t=0, so that the small hopping integral 7 enhances the
pairing correlation. Additionally, we can estimate the so-
called Luttinger parameter as K, from the derivative of N(q)
at g=0, i.e., K,=(7/2)[dN(q)/dq],-y; we thus find the value
K,~0.637. The superconducting correlation can be the most
dominant one since K,>0.5 is the criterion in a model with
four Fermi points.24’25p These results are also consistent with
the spin-triplet superconducting mechanism proposed in
Ref. 5.

IV. SUMMARY

In order to study the low-energy physics of the 1D Hub-
bard model with next-nearest-neighbor hopping integral, the
spin and the charge excitation spectra are calculated using
the DDMRG method. We first demonstrate the accuracy of
the DDMRG method in comparison with the noninteracting
exact spectrum. We suggest, for practical calculation, that it
is neccesary to take a relatively small system for obtaining
an overview of spectrum and larger system for investigating
detailed structures of low-frequency range because a re-
quired CPU time increases rapidly for higher frequency
and/or larger system. Thus, the DDMRG method enables us
to study the details of relatively complicated spectrum struc-
tures.

We then introduce the on-site Coulomb interaction. The
spin and charge excitation spectra are essentially the same as
that of the 1D quarter-filled Hubbard (and #-J) model;
namely, the 2k-SDW and the 4k -CDW correlations along
the hopping integral ¢’ are enhanced. However, the hopping
integral 7, even if it is small, plays a crucial role for short-
rage correlations and low-energy physics; ferromagnetic cor-
relation between electrons on neighboring sites is enhanced
and pairing correlation between the electrons is induced.
Consequently, our dyamical calculations support the spin-
triplet superconducting mechanism where the pairing of elec-
trons occurs between the inter-#'-chain nearest-neighbor
sites.

Last, we mention a possible further extension of this
work. We must obtain a strong evidence of the dominant spin
triplet pairing state if the current spin-susceptibility could be
successfully calculated. However, sufficiently accurate calcu-
lations are not simple and will require considerble efforts.
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